The dynamics of nitrogen uptake and its remobilization during the growth of sugar beet

Author:

Armstrong M. J.,Milford G. F. J.,Pocock T. O.,Last P. J.,Day W.

Abstract

SUMMARYThe uptake and distribution of N were examined in a series of sugar-beet crops grown on different sites (Broom's Barn, Suffolk and Trefloyne, Dyfed) or with 0 (No) or 125 kg N/ha (N125) between 1978 and 1982. Depletion of soil N was followed in some years. Initial rates of N uptake in spring for the N125 crops at Broom's Barn ranged from 2·3 kg/ha per day in 1980 to 5·8 kg/ha per day in 1981 and 1982 and at Trefloyne from 4·7 kg/ha per day in 1980 to 5·4 kg/ha per day in 1979. The initial phase of N uptake in No crops was shorter and at Broom's Barn the rate ranged from 1·6 kg/ha per day in 1979 to 5·1 kg/ha per day in 1982. Crops with high initial uptake rates had somewhat greater shoot N concentrations. There was no relation between the initial uptake rates or the total N uptake and the amounts of mineral N in the soil at the start of rapid growth in June. Simulations of early crop growth coupled with analysis of changes in the total N in the crop-plus-soil system showed that the rate of N uptake by the N125 crops was regulated by crop demand for N as determined by growth rate in 4 of the years and by soil supply in the 5th. The analysis of the crop-plus-soil N also showed that substantial losses of N occurred when the crop was actively growing in June and July in 1979 and 1980 due to excessive rainfall following early irrigations. There were serious consequences for N uptake, N concentration in developing leaves and the overall growth of these crops.N uptake rates in autumn ranged from no net uptake in 1979 and 1980 to 0·6 kg/ha per day in the other 3 years at Broom's Barn and 1·0 kg/ha per day at Trefloyne. Large amounts of N were remobilized from the shoot to sustain the growth of the storage root in years when uptakes from the soil in autumn were small. Remobilized N represented 80, 50 and 30% of the net increase in storage-root N between the end of August and harvest in 1979, 1980 and 1981 respectively. The amounts remobilized from shoots ranged from 8 to 18 kg N/ha and may therefore also represent a source of amino-N impurities in harvested beet. An analysis of N in individual leaves showed that remobilized N probably originated from leaf protein and that remobilization started at full expansion rather than at the onset of leaf senescence, which was often many weeks later.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference32 articles.

1. Van Brao P. F. J. , Holmes M. R. J. & Dilz K. (1983). Nitrogen supply from fertilizers and manure: its effect on yield and quality of sugar beet. International Institute for Sugar Beet Research, Symposium ‘Nitrogen and Sugar Beet’ Brussels, pp. 189–282.

2. Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence

3. Proteolytic activity in relationship to senescence and cotyledonary development in Pisum sativum L.

4. Nitrate assimilation and translocation by higher plants: Comparative physiology and ecological consequences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3