Breeding for reduced methane emissions in extensive UK sheep systems

Author:

COTTLE D. J.,CONINGTON J.

Abstract

SUMMARYSelection index theory was used to model the effects of methane (CH4) production in the breeding objective on genetic responses in Scottish Blackface sheep in hill production systems in the UK. A range of economic values (EVs) were assumed for CH4 production calculated from possible carbon prices (£/t CO2 equivalent (CO2-e)). The implicit price of carbon required for maintenance of CH4 levels or to reduce CH4 production by 0·1 kg/head/yr in a hill flock was calculated. The predicted genetic changes in CH4 production from current selection programmes that have an implicit methane EV of zero were calculated. Correlations between production traits and CH4 production were sampled from assumed normal distributions, as these correlations are currently unknown. Methane emissions are likely to increase at a rate of c. 3 kg CO2-e/ewe/yr as a result of using current industry selection indices in hill sheep farming systems in the UK. Breeding objectives for more productive hill sheep include reducing lamb losses and rearing more, heavier lambs. By placing a cost on carbon emissions to halt the genetic increase in methane, heavy penalties will be incurred by farmers in terms of reduced productivity. This amounts to £6/ewe/yr or a 5% discounted loss of £2851 per 100 ewe flock over a 10-year selection horizon. If the correlations between production traits and CH4 are positive (as expected) then an implicit carbon price of c. £272/t CO2-e is required for no genetic increase in CH4 production if methane is not measured and c. £50/t CO2-e if methane could be measured. Achievement of government targets for the whole economy of a 20% reduction in greenhouse gases (GHGs) over a 30-year period would require carbon prices (/t CO2-e) of £1396 (indirect selection) or £296 (direct selection) for the sheep industry to achieve a 20% reduction entirely via a genetic change of c. –0·1 kg methane/head/yr. These carbon prices are placed in the context of possible government policies. A combination of genetic and non-genetic measures will probably be required for cost-effective reduction in methane production to meet government targets.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3