Effects of nitrogen fertilizer, plant population and irrigation on sugar beet: III. Water consumption

Author:

Draycott A. P.,Durrant M. J.

Abstract

SUMMARYA neutron moderation meter was used to measure soil moisture 0–4 feet deep in plots of sugar beet carrying two plant populations (8800 and 54000 plants/acre), each with and without irrigation. Recordings began in April or May in each of three years (1967–9) after sowing the crop and continued at 1 or 2-;week intervals until harvest in October.The measured soil moisture deficits were very similar to potential deficits calculated from meteorological measurements. This indicates that the crop could extract the water needed for transpiration from the soil even when the deficits were quite large (more than 5 in in 1967), which probably explains the small response to irrigation by sugar beet in England.When the soil moisture deficit increased rapidly early during the season (1967), the crop extracted water from the soil by exhausting the available water from progressively deeper horizons, whereas when the deficit increased rapidly late during the season (1969) water was still being extracted from all horizons until harvest. Both decreasing the plant population and irrigating decreased the amount of water used from depth in the profile every year.The total amount of water used (evaporation plus transpiration), on average, from soil reserves and rainfall, was 12·2 in by the small population and 13·4 in by the large population. When irrigated, the consumption increased to 14·2 and 15·4 in. respectively. The difference in usage between populations was almost entirely from the difference in leaf cover early during the season. The water consumption in 1968, when the summer was wet, was only two-thirds of that in 1967 and 1969 when the summers were drier.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference7 articles.

1. Effects of nitrogen fertilizer, plant population and irrigation on sugar beet. Part I. Yields;Draycott;J. agric. Sci., Camb.,1971

2. Woburn irrigation, 1951–59 I. Purpose, design and weather

3. Effects of nitrogen fertilizer, plant population and irrigation on sugar beet. Part II. Nutrients;Draycott;J. agric. Sci., Camb.,1971

4. Harris P. M. (1970). The interaction between plant density and irrigation in the sugar beet crop. XXXIIIrd Wint. Oongr. Inst. Int. Rech. Betteravier, Brussels.

5. MEASUREMENT OF SOIL MOISTURE IN THE FIELD BY NEUTRON MODERATION

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3