Mechanisms of adjustment by different pearl millet plant types to varying plant population densities

Author:

BIDINGER F. R.,RAJU D. S.

Abstract

Pearl millet (Pennisetum glaucum (L.) R. Br.) is commonly grown at a wide range of plant population densities, both by design and as a consequence of stand establishment problems. High tillering genotypes are known to compensate effectively for lower plant population densities through their tillering capacity; less is known about the ability of naturally low tillering genotypes to adjust to low plant population densities. This is a particular concern in the case of the Iniadi landrace materials which are currently widely used in breeding programmes in both India and Africa. This research was done to determine how effectively the low tillering Iniadi types adjust to low plant population densities and how their mechanism(s) of adjustment compares to those of higher tillering materials. Two high and two low tillering genotypes were grown over a period of 5 years at plant population densities ranging from 12 to 2 plants/m2, under both high and low fertility regimes at the ICRISAT Centre, India. Both the high and low tillering types adjusted equally well to the reduced plant population densities, as judged by grain yield, but differed in their mechanism of adjustment. The high tillering genotypes adjusted, as expected, primarily by increasing productive tiller numbers, with only small changes in individual tiller productivity. The Iniadi genotypes increased productive tiller numbers in response to decreasing plant population densities to a limited degree, but increased panicle productivity to a much greater degree than the high tillering types. There was no differential effect on adjustment ability between the two types as a consequence of increased fertility, despite the stimulating effect of fertility on productive tiller numbers. The results are discussed in terms of generalized mechanisms of response to changing individual plant environmental resources (fertility and space), and in terms of the use of Iniadi germplasm in pearl millet breeding programmes.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3