Potential impacts of climate change on marine wild capture fisheries: an update

Author:

PERRY R. I.

Abstract

SUMMARYThis paper provides a brief update on the potential impacts of climate change on marine ecosystems and marine wild capture fisheries based on the scientific literature published since 2007. Current models predict shifts in fish distributions of 45–60 km per decade, with 0·80 of species moving poleward. With a high CO2 emissions scenario, little overall change in the global maximum potential fisheries catch is projected (±1%), although with high spatial variability: decreases of 40% are projected for the tropics, with increases of 30–70% for higher latitudes. Tropical nations appear to be most vulnerable to the impacts of climate change on fisheries production. Coupled atmosphere–ocean–fish production–human society models are beginning to be developed for specific market systems. Results suggest that how society responds can have as large or larger an effect as the strength of the climate impact. Good observations of the impacts of climate change exist for high latitude, coral reef and North Atlantic systems. Management strategies are being developed to address climate change and fisheries, including risk and vulnerability assessment frameworks, pro-active planning with stakeholders regarding potential impacts and responses and examining existing regulations to identify gaps created by altered species distributions (e.g. unregulated fishing in newly ice-free areas). Overall, fisheries governance systems are needed which are flexible and can quickly adapt to changing ecological and human societal conditions. Significant knowledge gaps include a comprehensive and co-ordinated global network of observations to help distinguish climate change from variability, and increased detail in the structure and processes of models. Necessary next steps include reducing the uncertainties of climate impacts models at present, understanding the synergistic effects of multiple stressors and the inclusion of humans into coupled models and socio-economic analyses, in particular at regional and local scales. In the intermediate term, developing nations in tropical regions are likely to be most negatively impacted, whereas developed nations at higher latitudes are most likely to benefit. In the longer term, overall marine food security will depend on the impacts of climate change on marine primary production, for which the present projections are highly uncertain. Adoption of an integrated social–ecological approach that improves the adaptive capacities of ecological and human social systems will help to sustain food security from marine wild capture fisheries.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3