The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins

Author:

AGHDAM M. S.,SEVILLANO L.,FLORES F. B.,BODBODAK S.

Abstract

SUMMARYFresh fruits and vegetables have a short post-harvest life and are prone to post-harvest losses due to mechanical injury, physiological causes and decay. Low-temperature storage is widely used as post-harvest treatment applied for delaying senescence in vegetables and ornamentals and ripening in fruits, upholding their post-harvest quality. But the refrigerated storage of tropical and subtropical crop plant species provokes a set of physiological alterations known as chilling injury that negatively affect their quality and frequently renders the product not saleable. Membrane damage and reactive oxygen species (ROS) accumulation are the main adverse effects of chilling injury impact in sensitive horticultural products. The chilling injury tolerance of certain plant species is attributed to their ability to accumulate heat-shock proteins (HSP). The beneficial action of HSP in chilling tolerance is due to their chaperone activity but, besides this biological function, small HSP (sHSP) are able to function as membrane stabilizers and ROS scavengers, or synergistically with cell antioxidant systems. Also, biosynthesis of osmolytes such as raffinose and proline is under the regulation of heat-shock transcription factors (HSTF). These molecules are critical for osmotic adjustment since low temperatures also provoke a secondary osmotic stress. The use of biotechnological strategies can be envisaged, with the aim of generating engineered crop plants of horticultural interest to induce the production and action of HSP and HSTF, in order to assure the beneficial effects of these proteins in promoting chilling injury tolerance during their post-harvest refrigerated storage. In particular, induction of HSTF expression using biotechnology has significant potential and interest for reducing the impact of chilling injury on sensitive produce, avoiding the practical difficulties of applying the classic post-harvest technologies based on heat treatment.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3