Digestibility and chemical composition of fractions of lucerne during spring and summer

Author:

Christian K. R.,Jones D. B.,Freer M.

Abstract

SUMMARYBulk harvests of primary growth were made at intervals during the spring and summer of 2 consecutive years from an ungrazed area of lucerne (Medicago sativa) and the digestibility by sheep was measured. At the same times, shoots of known length representative of the sward were collected, divided into 7·5 cm lengths, and separated into leaf and stem for the determination of ash, nitrogen, cellulose, and in vitro organic matter digestibility.Digestibility and leaf: stem ratio of the bulk harvests decreased and dry matter increased as the season advanced. Leaf composition changed little, but stem increased in lignin and decreased in ash and in vitro digestibility. In vitro digestibility and leaf: stem ratio were highly correlated with sheep digestibility.Chemical composition of shoots of known heights was similar to that of the bulk harvests. Leaf weights/shoot tended to increase linearly with height of shoot, whereas stem increased nearly as the square of the height. Dry matter of leaf and stem were inversely related to leaf:stem ratio. Stem digestibility decreased with leaf:stem ratio and with increase in shoot height.Chemical components of shoot fractions were associated with each other and were largely dependent on the distance from the top of the shoot at which they had been taken, irrespective of shoot height or time of year. Bottom stems had lower ash, nitrogen and digestibility but higher cellulose, dry weight and dry matter than top stems, whose composition approached that of leaves. Leaf fractions showed little consistent trend with position on the shoot.Some of the difficulties in studying changes in plant composition under field conditions are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3