Simulating the effects of grassland management and grass ensiling on methane emission from lactating cows

Author:

BANNINK A.,SMITS M. C. J.,KEBREAB E.,MILLS J. A. N.,ELLIS J. L.,KLOP A.,FRANCE J.,DIJKSTRA J.

Abstract

SUMMARYA dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH4) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH on the production of individual volatile fatty acids and CH4 as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed on CH4 emission, with a maximum difference (across all forage types and all levels of DMI) of 49 and 77% in g CH4/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0·1 and 0·4, respectively (values ranging from 10·2 to 19·5 g CH4/kg FCM). The lowest emission was established for early cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH4/kg FCM declined on average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0·1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0·4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH4 emission per kg FCM mainly as a result of a higher DMI and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with cows consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0·12 of the observed mean. Both observed and predicted emission expressed in g CH4/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH4 emission in cattle sheds on Dutch dairy farms and indicated that on average a fraction of 0·28 of the total emissions must have originated from manure under these circumstances.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference49 articles.

1. Van Straalen W. M. (1995). Modelling of nitrogen flow and excretion in eairy cows. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands.

2. Feed evaluation for ruminants. I. The systems in use from May 1977-onwards in The Netherlands

3. In sacco degradation characteristics of organic matter, neutral detergent fibre and crude protein of fresh grass fertilized with different amounts of nitrogen

4. Effects of Perennial Ryegrass Cultivars on Intake, Digestibility, and Milk Yield in Dairy Cows

5. Reijs J. (2007). Improving slurry by diet adjustments: a novelty to reduce N losses from grassland-based dairy farms. Ph.D. thesis, Wageningen University, Wageningen, The Netherlands.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3