Effects of different concentrations of atmospheric CO2on growth and yield components of wheat

Author:

Sionit N.,Strain B. R.,Hellmers H.

Abstract

SummaryGrowth and yield components of a semi-dwarf spring wheat (Triticum aestivumL., cv. GWO 1809) were determined under three different atmospheric CO2a concentrations (350, 675 and 1000 μ1/1) in controlled environment chambers of the Duke University Phytotron. CO2 enrichment enhanced tiller and head emergence and increased the number of head-producing tillers and the total dry weight of the plants. Total leaf area, stem height and root/shoot ratio of the plants were greater at high CO2concentrations than at low. Net assimilation rate (NAR) increased with increasing CO2concentration and decreased with plant size. There was little effect of CO2enrichment on leaf weight ratio (LWR) and leaf area ratio (LAR) and no significant effect on specific leaf area (SLA). The weight and number of seeds were significantly higher with increasing CO2concentration. The results of this study provide evidence that important changes in plant growth and development may occur during the next century if global CO2enrichment continues. Some of these changes would have important ecological impact in natural and managed ecosystems in the future.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3