The mechanism of the decomposition of cyanamide in the soil

Author:

Cowie G. A.

Abstract

A Previous investigation by the writer (1) showed that cyanamide readily breaks down, yielding ammonia in normal clay and sandy soils. The evidence, however, threw no light upon the cause or nature of this change. This question was accordingly reserved for a later investigation. The concensus of the available evidence indicated that the production of ammonia from cyanamide in the soil is due to direct bacterial action. This view was held by Immendorff(2) and Kappen(3), who concluded that in poor soils of low bacterial activities cyanamide is not converted into ammonia but is chemically transformed into dicyanodiamide. Löhnis(4) at first accounted in a similar way for the formation of ammonia from cyanamide in the soil. He(5) assumed later, however, that cyanamide is normally decomposed by soil colloids into urea or possibly some other substances, and the latter are then converted into ammonia by the soil organisms. He adduced no direct evidence of the production of urea from cyanamide in the soil.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference10 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3