Plant breeding and climate changes

Author:

CECCARELLI S.,GRANDO S.,MAATOUGUI M.,MICHAEL M.,SLASH M.,HAGHPARAST R.,RAHMANIAN M.,TAHERI A.,AL-YASSIN A.,BENBELKACEM A.,LABDI M.,MIMOUN H.,NACHIT M.

Abstract

SUMMARYClimate change is now unequivocal, particularly in terms of increasing temperature, increasing CO2concentration, widespread melting of snow and ice and rising global average sea level, while the increase in the frequency of drought is very probable but not as certain.However, climate changes are not new and some of them have had dramatic impacts, such as the appearance of leaves about 400 million years ago as a response to a drastic decrease in CO2concentration, the birth of agriculture due to the end of the last ice age about 11 000 years ago and the collapse of civilizations due to the late Holocene droughts between 5000 and 1000 years ago.The climate changes that are occurring at present will have – and are already having – an adverse effect on food production and food quality with the poorest farmers and the poorest countries most at risk. The adverse effect is a consequence of the expected or probable increased frequency of some abiotic stresses such as heat and drought, and of the increased frequency of biotic stresses (pests and diseases). In addition, climate change is also expected to cause losses of biodiversity, mainly in more marginal environments.Plant breeding has addressed both abiotic and biotic stresses. Strategies of adaptation to climate changes may include a more accurate matching of phenology to moisture availability using photoperiod-temperature response, increased access to a suite of varieties with different duration to escape or avoid predictable occurrences of stress at critical periods in crop life cycles, improved water use efficiency and a re-emphasis on population breeding in the form of evolutionary participatory plant breeding to provide a buffer against increasing unpredictability. ICARDA, in collaboration with scientists in Iran, Algeria, Jordan, Eritrea and Morocco, has recently started evolutionary participatory programmes for barley and durum wheat. These measures will go hand in hand with breeding for resistance to biotic stresses and with an efficient system of variety delivery to farmers.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 282 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3