The response of different types of pigs to varying levels of feeding from weaning to bacon weight, with particular reference to carcass quality

Author:

Lucas I. A. M.,Calder A. F. C.

Abstract

1. A review of the literature indicated: (a) A lack of agreement upon whether or not restriction of the plane of feeding from weaning or 100 lb. live weight to bacon weight improves efficiency of food conversion. (b) That a severe restriction of the plane of feeding improves carcass-quality measurements, (c) That a less severe restriction of food intake brings the total growth period within a range more acceptable to the farmer, but only has a small effect in improving carcass quality, (d) That the small benefits to quality from this less severe restriction may be equalled or surpassed by quite small changes in the genetic ‘type’ of pig fed. (e) That there are probably interactions in the response of different ‘types’ of pig to different planes of feeding.2. Two experiments were undertaken. In Exp. 1 both Large White × Swedish Landrace pigs and Large White × Wessex Saddleback pigs were fed from weaning to bacon weight to one of three planes of feeding. Exp. 2 was very similar in design except for some modifications to planes of feeding and the substitution of Essex Saddleback × Large White pigs in place of the Wessex crosses.3. In Exp. 1 the planes of feeding, according to our stated definitions in terms of total digestible nutrients consumed daily at different live weights, were: very high during both growing and finishing periods (VH-VH); very high during the growing period but restricted during the finishing period (VH-R); and very low during both growing and finishing periods (VL-VL). In Exp. 2 the planes of feeding were: VH-VH; VH-R, the restriction being slightly more severe than in Exp. 1; and low during both growing and finishing periods (L-L).4. In Exp. 1 there was no difference in growth rate between breed crosses. Pigs on the VH-R and VL-VL planes were 12 and 88 days older respectively at bacon weight than those fed to the VH-VH plane. In Exp. 2, Landrace crosses grew faster than the Essex crosses on the VH-VH and VH-R planes, but Essex crosses grew faster on the L-L plane. Landrace crosses fed to the VH-R and L-L planes were 11 and 63 days older respectively at bacon weight than others fed to the VH-VH plane. Essex crosses fed to the VH-R and L-L planes were 16 and 53 days older respectively at bacon weight than others fed to the VH-VH plane.5. In Exp. 1 there was no difference in food-conversion efficiency (f.c.e.) between breed crosses. There was no significant difference in f.c.e. between the VH-VH and VH-R planes, but there was a loss of 14% in F.C.E. on the VL-VL plane. In Exp. 2 the Landrace crosses had better F.C.E.'s than the Essex crosses on the VH-VH and VH-R planes, but Essex crosses were the more efficient on the L-L plane. There was no significant difference in F.C.E. between the VH-VH and VH-R planes for either breed cross, but there were losses in efficiency of 4 and 14% on the L-L plane for the Essex and Landrace crosses respectively.6. In Exp. 1 the Landrace crosses had less back fat over the shoulder than had the Wessex crosses. Pigs of both crosses fed to the VH-R plane had smaller fat measurements than those fed to the VH-VH plane, but this improvement was only significant for minimum back fat. Landrace crosses also had less fat over the ‘eye’ muscle when fed to the VH-R plane, but this did not apply with the Wessex crosses. The difference in carcass quality attributable to the restricted plane of feeding after 100 lb. live weight was considered to be equalled by the difference between breed crosses. The improvement in carcass-quality measurements between pigs fed to the VH-VH and VL-VL planes surpassed the difference between breed crosses, but the carcasses tended to be soft. However, no data were available on the iodine numbers of the fats.7. In Exp. 2 the Landrace crosses had less fat over the shoulder and over the eye muscle and smaller minimum back-fat measurements than had the Essex crosses. Pigs of both crosses fed to the VH-R plane had smaller fat measurements than those fed to the VH-VH plane, the difference being significant for shoulder fat and minimum back fat. Again the differences between the effects of these two planes of feeding and between the two breed crosses were considered about equal, and again the difference between breed crosses was surpassed by the difference between the carcass measurements of pigs fed to the VH-VH and L-L planes. In Exp. 2 the effects of planes of feeding upon length of carcass, thickness of streak, percentage fore and percentage middle differed significantly between the two breed crosses.8. When carcass data from both experiments were compared it was apparent that differences between breeds or strains of bacon-type pigs are likely to be of more importance in the production of high-grade bacon than attempts to alter the conformation by varying the plane of feeding—and thus the growth curve—within the limits acceptable in practice.9. Although previous evidence indicates that males grow faster than females, there was in Exp. 1 no significant difference in growth rate between the sexes. In Exp. 2 there was again no overall significant sex effect, but during the finishing period females grew faster than males on the VH-VH and VH-R planes, but males grew the faster on the L-L plane. In Exp. 1 there was no significant difference between sexes in F.C.E., but in Exp. 2 males were less efficient than females on the VH-VH and VH-R planes, but were the more efficient on the L-L plane, this interaction again developing principally during the finishing period.10. In both experiments females had carcasses which were longer, had less fat, larger areas of ‘eye’ muscle and larger hams than males. In both experiments the restricted plane of feeding after 100 lb. live weight reduced the shoulder-fat measurements of females but had no effect on those of males which, being the fatter, had the greatest need of improvement to achieve the highest grade. However, the statistical significance of this interaction was low and it requires confirmation.11. It is not the intention of the authors that these results should be taken to apply in general to the breed crosses used. The breed crosses were chosen solely as pigs which would differ somewhat in genetic type from each other.12. The results from these experiments confirmed the indications from the literature which have been noted in paragraph 1 of this summary. The results and some of their implications have been discussed in the text.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference77 articles.

1. Gregory K. E. & Dickerson G. E. (1952). Res. Bull. Mo. Agric. Exp. Sta. no. 493.

2. Russell E. Z. (1930). Yearb. U.S. Dep. Agric. p. 322.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3