An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities

Author:

Chen L. J.,Li C. S.,Feng Q.ORCID,Wei Y. P.,Zhao Y.,Zhu M.,Deo R. C.

Abstract

AbstractAlthough numerous studies have investigated the individual effects of salinity, irrigation and fertilization on soil microbial communities, relatively less attention has been paid to their combined influences, especially using molecular techniques. Based on the field of orthogonal designed test and deoxyribonucleic acid sequencing technology, the effects of saline water irrigation amount, salinity level of irrigation water and nitrogen (N) fertilizer rate on soil bacterial community structure were investigated. The results showed that the irrigation amount was the most dominant factor in determining the bacterial richness and diversity, followed by the irrigation water salinity and N fertilizer rate. The values of Chao1 estimator, abundance-based coverage estimator and Shannon indices decreased with an increase in irrigation amount while increased and then decreased with an increase in irrigation water salinity and N fertilizer rate. The highest soil bacterial richness and diversity were obtained under the least irrigation amount (25 mm), medium irrigation water salinity (4.75 dS/m) and medium N fertilizer rate (350 kg/ha). However, different bacterial phyla were found to respond distinctively to these three factors: irrigation amount significantly affected the relative abundances of Proteobacteria and Chloroflexi; irrigation water salinity mostly affected the members of Actinobacteria, Gemmatimonadetes and Acidobacteria; and N fertilizer rate mainly influenced the Bacteroidetes' abundance. The results presented here revealed that the assessment of soil microbial processes under combined irrigation and fertilization treatments needed to be more careful as more variable consequences would be established by comparing with the influences based on an individual factor, such as irrigation amount or N fertilizer rate.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3