Developmental and tillering responses of winter wheat (Triticum aestivuni) crops to CO2 and temperature

Author:

Batts G. R.,Wheeler T. R.,Morison J. I. L.,Ellis R. H.,Hadley P.

Abstract

SUMMARYWinter wheat (Triticum aestivum L., cv. Hereward) was grown in the field within four double-walled polyethylene-covered tunnels along which near-linear temperature gradients were imposed at normal atmospheric or at an elevated CO2 concentration (c. 700 μmol mol−1 CO2) in 1991/92 and in a further experiment in 1992/93. Development was more rapid the warmer the temperature. In 1991/92 an increase in mean seasonal temperature of 3·5 °C reduced the duration from sowing to harvest maturity (the stage when grain moisture content reduced naturally to 15–18%) by c. 38 days, and reduced the duration from the double ridge stage to harvest maturity by c. 34 days. A similar difference resulted from only 1·6 °C warming in 1992/93. Although the range of mean seasonal temperatures differed between years, the relation between temperature and rate of development from sowing to harvest maturity was common to both years (base temperature, −0.8 °C; thermal time 2410 °C d). Carbon dioxide concentration had no effect on this relation or on that between temperature and the rate of development from sowing to the double ridge stage and from the double ridge stage to harvest maturity. Carbon dioxide enrichment increased tillering substantially in 1991/92; there were 200 more shoots m−2 at terminal spikelet formation in crops grown at elevated compared to normal CO2 (additional shoots were principally coleoptile tillers and those developing after tiller 2) and this difference was reduced to 100 shoots m−2 approaching harvest maturity (additional shoots remaining were those developing after tiller 2). In contrast, no effect of CO2 enrichment on tillering was detected at any stage of development in 1992/93. The number of tillers per plant at terminal spikelet formation was a linear function of main stem dry weight at this developmental stage; this relationship was not affected by year or CO2. As CO2 enrichment increased main stem dry weight in the first year only, when main stem dry weights at normal CO2 were only one half of those values determined in the following year, it is concluded that any benefit of increase in CO2 concentration to tillering in winter wheat may be greatest in those crop production environments where main stem dry weights at terminal spikelet are least and vice versa.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3