A drought experiment using mobile shelters: the effect of drought on barley yield, water use and nutrient uptake

Author:

Day W.,Legg B. J.,French B. K.,Johnston A. E.,Lawlor D. W.,Jeffers W. De C.

Abstract

SummaryAutomatic mobile shelters were used to keep rain off a barley crop in a drought experiment. The treatments ranged from no water during the growing season to regular weekly irrigation. This paper reports the effect of drought on the harvest yield and its components, on water use and nutrient uptake.Drought caused large decreases in yield, and affected each component of the grain yield. The magnitude of each component varied by up to 25% between treatments, and much of the variation could be accounted for by linear regression against the mean soil water deficit in one of three periods. For the number of grains per ear, the relevant period included tillering and ear formation; for the number of ears per unit ground area, the period included stem extension and tiller death; for grain mass, the period included grain filling.The harvest yields were linearly related to water use, with no indication of a critical period of drought sensitivity. The relation of grain yield to the maximum potential soil water deficit did show that a prolonged early drought had an exceptionally large effect on both yield and water use.Two unsheltered irrigation experiments, also on barley, were made in the same year on a nearby site. The effects of drought on yield in these experiments were in good agreement with the effects observed on the mobile shelter site.When fully irrigated, the small plots under the mobile shelters used water 11% faster than larger areas of crop, because of advection. The maximum depth from which water was extracted was unaffected by the drought treatment. When 50% of the available soil water had been used the uptake rate decreased, but the maximum depth of uptake continued to increase.Measurements of crop nutrients at harvest showed that nitrogen uptake was large, because of site history, and that phosphate uptake was decreased by drought to such an extent that phosphate shortage may have limited yield.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference37 articles.

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3