Calcium and phosphorus utilization in growing sheep supplemented with dicalcium phosphate

Author:

DIAS R. S.,LÓPEZ S.,PATIÑO R. M.,SILVA T. S.,SILVA FILHO J. C.,VITTI D. M. S. S.,PEÇANHA M. R. S. R.,KEBREAB E.,FRANCE J.

Abstract

SUMMARYThe objective of the current study was to evaluate the utilization of calcium (Ca) and phosphorus (P) in growing sheep consuming increasing amounts of dicalcium phosphate. Eighteen growing sheep, aged 8 months, were fed a basal diet supplemented with 0, 12·5 and 25 g of dicalcium phosphate/day. During the experiment, animals were injected intravenously with 7·4 MBq of45Ca and32P and samples of plasma, faeces and urine were subsequently taken daily for 1 week after injection. Rumen fluid was sampled on days 4–7 after injection. Specific radioactivity in plasma and in faeces were used to determine true absorption of Ca and P, whereas plasmatic and ruminal specific radio-activities were used to determine endogenous P flow into the rumen and turnover time of rumen P. Increasing dicalcium phosphate intake led to linear increases in faecal excretion of endogenous Ca and P (P<0·05), suggesting that surpluses of ingested Ca and P were voided through secretion to the gut. True absorption coefficients for 0, 12·5 and 25 g of dicalcium phosphate ingested daily were 0·54, 0·41 and 0·38 for Ca, and 0·66, 0·62 and 0·64 for P, respectively. Flows of endogenous P into the rumen increased linearly and ruminal turnover time of P decreased linearly (P<0·01) as P intake was increased. Concentrations of Ca and P in bone were not affected by the increased amounts of these minerals ingested (P<0·05). In conclusion, increasing ingestion of dicalcium phosphate increases faecal excretion of Ca and P, thus decreasing the efficiency of utilization of both minerals. Moreover, increasing levels of dietary P increased endogenous P excretion, contributing to the amount of P disposed of in the environment.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3