Author:
LÁZARO L.,ABBATE P. E.,COGLIATTI D. H.,ANDRADE F. H.
Abstract
SUMMARYThe effect of phosphorus deficiency on yield formation in spring wheat (Triticum aestivumcv. Prointa Oasis) was investigated, focusing on crop growth and dry matter partitioning during the spike growth period (SGP), which is critical for grain number determination. Two experiments combining shading and P deficiency were performed at Balcarce, Argentina (37°45′S). The main treatments were two levels of soil P-availability: low P, a naturally low P fertility soil (7·0 and 5·5 mg Bray extractable P/kg soil, in the first and second experiments respectively) and high P, a P dose that does not limit growth. The sub-treatments were two levels of radiation (shaded and control). Phosphorus deficiency affected yield mainly through the number of grains/unit surface (m2). Differences in grain number/m2were related to differences in dry weight of spikes/m2, measured 7 days after anthesis, excluding grain weight. The duration of the SGP did not change much as result of P deficiency: 27 days with high P and only 3 days more with low P. Therefore, changes in spike dry weight were mainly due to differences in spike growth rate. In turn, the spike growth rate of all treatments was linearly related to crop growth rate, with little effect of dry matter partitioning to spikes. Finally, differences in crop growth rate between P treatments were mainly determined by the amount of intercepted radiation. It was concluded that P deficiency resulted in a reduction in intercepted radiation during the SGP, thus causing a reduction in grain number and crop yield.
Publisher
Cambridge University Press (CUP)
Subject
Genetics,Agronomy and Crop Science,Animal Science and Zoology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献