Effects of a compacted subsoil layer on root and shoot growth, water use and nutrient uptake of winter wheat

Author:

Barraclough P. B.,Weir A. H.

Abstract

SummaryAvalon winter wheat was grown in 1983 on a light-textured, sandy loam (Cottenham series) which had a subsoil pan with a maximum dry bulk density of 1·8 g/cm3 at 35 cm depth. This was destroyed on part of the site with a ‘Wye Double Digger’ so that crop growth in panned and pan-free soils could be compared. The interaction of the pan with soil water supply was studied by sheltering the crops during May, June and July and either withholding water completely or irrigating weekly back to field capacity.The pan had a major effect on the vertical extension rate of the root system as monitored both by coring and from observation tubes. Roots were largely confined above the pan until March, but compensatory growth occurred within this soil layer and the total length of root was unaffected. At anthesis, roots had reached a maximum depth of 100 cm in the panned soil compared with 140 cm in the pan-free soil.Early shoot growth and N content were substantially reduced by the pan because of the inaccessibility of mineral N in the subsoil. However, both the growth of the crop and N uptake recovered following top dressings of N fertilizer and, when water was not limiting, the pan had a negligible effect on grain yield.Root and shoot growth were reduced by the fixed shelter, but the imposed drought did ot affect water use by the crops until after anthesis when the root systems were already fully developed. Without irrigation, the crop growing on the double-dug soil yielded 5% more than that growing on the panned soil, but there was no evidence for extra water use from the subsoil by the former crop. The best treatment (double-dug with irrigation) outyielded the worst (panned soil with drought) by 8%.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference19 articles.

1. Catt J. A. , King D. W. & Weir A. H. (1975). The soils of Woburn Experimental Farm. I. Great Hill, Road Piece and Butt Close. Rothamsted Experimental Station, Report for 1974, Part 2, pp. 5–28.

2. The growth and activity of winter wheat roots in the field: the effect of sowing date and soil type on root growth of high-yielding crops

3. Root Observations Using A Video Recording System In Mini‐Rhizotrons 1

4. The growth and activity of winter wheat roots in the field: nutrient uptakes of high-yielding crops

5. Welbank P. J. , Mullen L. A. , Wood D. W. , Widdowson F. V. , Penny A. , Darby R. J. & Hewitt M. V. (1984). Growth and yield of winter wheat on contrasting soils at Woburn. Rothamsted Experimental Station, Report for 1983, pp. 25–27.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3