Faecal index to estimate intake and digestibility in grazing sheep

Author:

DAVID D. B.,POLI C. H. E. C.,SAVIAN J. V.,AMARAL G. A.,AZEVEDO E. B.,CARVALHO P. C. F.,MCMANUS C. M.

Abstract

SUMMARYThe current research was carried out to evaluate the use of crude protein and fibre components in faeces for estimating intake and digestibility in sheep fed with pearl millet (Pennisetum americanum (L.) Leeke). The equations were developed from four trials in metabolism cages with 16 sheep in each trial. Each animal received a different quantity of millet leaves in the diet: 0·015, 0·020 and 0·025 dry matter (DM) as a proportion of live weight (LW) and ad libitum with at least 0·2 of daily feed refusals. Organic matter intake (OMI, g/day) was measured, through the difference between offer and refusals; total faeces were collected for 5 days, which was used to determine faecal crude protein (CPf, g/day and g/kg of organic matter (OM)), faecal neutral detergent fibre (NDFf, g/day and g/kg OM), faecal acid detergent fibre (ADFf, g/day and g/kg OM) and OM digestibility (OMD). Linear regression equations were calculated to determine the relationship between OMI and CPf (P<0·001, R2=0·90, relative prediction error (RPE=14·02%). A multiple linear equation was generated for OMI including CPf and NDFf (P<0·001, R2=0·94; RPE=9·25%). Hyperbolic (single and multiple) and exponential models were tested to estimate OMD, where the hyperbolic multiple model including CPf and NDFf showed lower RPE (3·90%). These equations for estimating OMI and OMD were evaluated on sheep grazing P. americanum fertilized with increasing levels of nitrogen (N) (50, 100, 200 and 400 kg N/ha), comparing measured and estimated OMI. The intake estimated by multiple regression (CP and NDFf) showed a higher R2 (0·98) and lower RPE (5·25%) than the simple (CPf only) linear equation (R2=0·94; RPE=20·45%). The results demonstrated the feasibility of using the faecal index generated in metabolism cages for estimating intake and digestibility in sheep grazing P. americanum.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3