UNIVERSAL ROSSER PREDICATES

Author:

KIKUCHI MAKOTO,KURAHASHI TAISHI

Abstract

AbstractGödel introduced the original provability predicate in the proofs of Gödel’s incompleteness theorems, and Rosser defined a new one. They are equivalent in the standard model ${\mathbb N}$ of arithmetic or any nonstandard model of ${\rm PA} + {\rm Con_{PA}} $, but the behavior of Rosser’s provability predicate is different from the original one in nonstandard models of ${\rm PA} + \neg {\rm Con_{PA}} $. In this paper, we investigate several properties of the derivability conditions for Rosser provability predicates, and prove the existence of a Rosser provability predicate with which we can define any consistent complete extension of ${\rm PA}$ in some nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $. We call it a universal Rosser predicate. It follows from the theorem that the true arithmetic ${\rm TA}$ can be defined as the set of theorems of ${\rm PA}$ in terms of a universal Rosser predicate in some nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $. By using this theorem, we also give a new proof of a theorem that there is a nonstandard model M of ${\rm PA} + \neg {\rm Con_{PA}} $ such that if N is an initial segment of M which is a model of ${\rm PA} + {\rm Con_{PA}} $ then every theorem of ${\rm PA}$ in N is a theorem of $\rm PA$ in ${\mathbb N}$. In addition, we prove that there is a Rosser provability predicate such that the set of theorems of $\rm PA$ in terms of the Rosser provability predicate is inconsistent in any nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference10 articles.

1. Henkin sentences and local reflection principles for Rosser provability

2. Metamathematics of First-Order Arithmetic

3. Derivability conditions on Rosser's provability predicates.

4. [5] Kikuchi M. and Kurahashi T. , Illusory models of Peano arithmetic, this Journal, vol. 81 (2016), pp. 1163–1175.

5. Rosser sentences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS THEOREMS;The Bulletin of Symbolic Logic;2021-01-05

2. Rosser Provability and the Second Incompleteness Theorem;Springer Proceedings in Mathematics & Statistics;2021

3. Rosser Provability and Normal Modal Logics;Studia Logica;2019-05-16

4. Introduction and Preliminaries;SpringerBriefs in Mathematics;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3