Author:
CSIMA BARBARA F.,HARRISON-TRAINOR MATTHEW
Abstract
AbstractWe investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is${\rm{\Delta }}_\alpha ^0 $-complete for someα. To prove this, we extend Montalbán’sη-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable structure, there is an ordinalαand a cone in the Turing degrees such that the exact complexity of computing an isomorphism between the given structure and another copy${\cal B}$in the cone is a c.e. degree in${\rm{\Delta }}_\alpha ^0\left( {\cal B} \right)$. In each of our theorems the cone in question is clearly described in the beginning of the proof, so it is easy to see how the theorems can be viewed as general theorems with certain effectiveness conditions.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献