Abstract
AbstractLet G be a countably infinite discrete group, let
βG be the Stone–Čech
compactification of G, and let ${G^{\rm{*}}} = \beta G \setminus G$. An idempotent $p \in {G^{\rm{*}}}$ is left (right) maximal if for every idempotent $q \in {G^{\rm{*}}}$, pq = p
(qp = P) implies qp
= q (qp =
q). An idempotent $p \in {G^{\rm{*}}}$ is strongly right maximal if the equation xp
= p has the unique solution x
= p in G*. We show that
there is an idempotent $p \in {G^{\rm{*}}}$ which is both left maximal and strongly right maximal.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献