Abstract
AbstractThis paper studies degenerate forms of Maxwell's equations which arise from approximations suggested by geophysical modelling problems. The approximations reduce Maxwell's equations to degenerate elliptic/parabolic ones. Here we consider the questions of existence, uniqueness and regularity of solutions for these equations and address the problem of showing that the solutions of the degenerate equations do approximate those of the genuine Maxwell equations.
Publisher
Cambridge University Press (CUP)