Reduction of second order linear dynamical systems, with large dissipation, by state variable transformations

Author:

Leipnik R. B.

Abstract

AbstractLinear dynamical systems of the Rayleigh form are transformed by linear state variable transformations , where A and B are chosen to simplify analysis and reduce computing time. In particular, A is essentially a square root of M, and B is a Lyapunov quotient of C by A. Neither K nor C is required to be symmetric, nor is C small. The resulting state-space systems are analysed by factorisation of the evolution matrices into reducible factors. Eigenvectors and eigenvalues are determined by these factors. Conditions for further simplification are derived in terms of Kronecker determinants. These results are compared with classical reductions of Rayleigh, Duncan, and Caughey, which are reviewed at the outset.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference17 articles.

1. Discussion of alternative Duncan formulations of the eigenproblem for the solution of non-classically, viscously damped linear systems;Brandon;Trans ASME, Ser. E, J. of Applied Mechanics,1985

2. Solution of the matrix equation AX + XB = C (Algorithm 826);Bartels;Commun. of Assoc, of Comp. Mach.,1972

3. Classical Normal Modes in Damped Linear Dynamic Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3