Abstract
AbstractA quasi-Newton method (QNM) in infinite-dimensional spaces for identifying parameters involved in distributed parameter systems is presented in this paper. Next, the linear convergence of a sequence generated by the QNM algorithm is also proved. We apply the QNM algorithm to an identification problem for a nonlinear parabolic partial differential equation to illustrate the efficiency of the QNM algorithm.
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. Quasi-Newton Methods and Unconstrained Optimal Control Problems
2. Reduced SQP Methods for Parameter Identification Problems
3. Solving inverse problems for hyperbolic equations via the regularization method;Yu;J. Computational Mathematics,1993
4. Sequential quadratic programming for parameter identification problems;Hwang;Fifth Symp. on Control of Distributed Parameter Systems,1989
5. The augmented lagrangian method for equality and inequality constraints in hilbert spaces
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献