Sodium Copper Oxalate Dihydrate: Na2Cu (C2O4)2. 2H2O Synthesis, Characterization, Morphology and Optical Properties

Author:

Polou R.,Triche C.,Barbier B.,Pitet G.

Abstract

AbstractCrystals of sodium copper oxalate dihydrate [Na2Cu (C2O4)2.2H2,O] were obtained by the gel method, from solutions of oxalic acid and copper chloride. The crystals form blue needles with idiomorphic faces of brilliant luster, permitting goniometric measurements and the determination of the morphology with the aid of crystallographic parameters. Optically the crystals are biaxial negative, 2V = 38°, with a weak dispersion r<v. The orientation of the indicatrix was determined using a universal stage.Crystals of sodium copper oxalate dihydrate, Na2Cu (C2O4)2.2H2O, were apparently first obtained in 1929 by Riley. Gleizes et al. (1980) undertook a preliminary crystallographic study of crystals obtained by a different technique from Riley's. In the first case, a solution of 33.5 g/L of sodium oxalate was heated and then poured gradually into a nearly saturated solution of copper sulfate until slight turbidity appeared. The turbidity was eliminated and the solution clarified by the addition of a little more sodium oxalate solution. In this way Riley obtained a dark blue solution which after filtration yielded extremely fine sky-blue needle-like crystals, rarely more than 8mm long. In the method of Gleizes et al. (1980), copper oxalate was dissolved in an aqueous solution of sodium oxalate; those authors observed complete dissolution when the molar ratio of sodium oxalate to copper oxalate was near 2. By evaporating the solution, they obtained long, prismatic crystals whose crystallographic constants they determined.In order to obtain crystals large enough for further crystallographic study, we set out to produce crystals of sodium copper oxalate by the gel method (Triché, 1984). We found that slow crystallization did encourage the formation of large crystals.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3