A method for mapping submicron-scale crystallographic order/disorder applied to human tooth enamel

Author:

Free R.,DeRocher K.,Xu R.,Joester D.,Stock S. R.

Abstract

Tooth enamel, the outermost layer of human teeth, is a complex, hierarchically structured biocomposite. The details of this structure are important in multiple human health contexts, from understanding the progression of dental caries (tooth decay) to understanding the process of amelogenesis and related developmental defects. Enamel is composed primarily of long, nanoscale crystallites of hydroxyapatite that are bundled by the thousands to form micron-scale rods. Studies with transmission electron microscopy show the relationships between small groups of crystallites and X-ray diffraction characterize averages over many rods, but the direct measurement of variations in local crystallographic structure across and between enamel rods has been missing. Here, we describe a synchrotron X-ray-based experimental approach and a novel analysis method developed to address this gap in knowledge. A ~500-nm-wide beam of monochromatic X-rays in conjunction with a sample section only 1 μm in thickness enables 2D diffraction patterns to be collected from small well-separated volumes within the enamel microstructure but still probes enough crystallites (~300 per pattern) to extract population-level statistics on crystallographic features like lattice parameter, crystallite size, and orientation distributions. Furthermore, the development of a quantitative metric to characterize relative order and disorder based on the azimuthal autocorrelation of diffracted intensity enables these crystallographic measurements to be correlated with their location within the enamel microstructure (e.g., between rod and interrod regions). These methods represent a step forward in the characterization of human enamel and will elucidate the variation of the crystallographic structure across and between enamel rods for the first time.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3