Characterization of MoS2 films via simultaneous grazing incidence X-ray diffraction and grazing incidence X-ray fluorescence (GIXRD/GIXRF)

Author:

Rodriguez Mark A.ORCID,Babuska Tomas F.,Curry John,Griego James J. M.,Dugger Mike T.,Larson Steven R.,Mings Alex

Abstract

Physical vapor deposited (PVD) molybdenum disulfide (nominal composition MoS2) is employed as a thin film solid lubricant for extreme environments where liquid lubricants are not viable. The tribological properties of MoS2 are highly dependent on morphological attributes such as film thickness, orientation, crystallinity, film density, and stoichiometry. These structural characteristics are controlled by tuning the PVD process parameters, yet undesirable alterations in the structure often occur due to process variations between deposition runs. Nondestructive film diagnostics can enable improved yield and serve as a means of tuning a deposition process, thus enabling quality control and materials exploration. Grazing incidence X-ray diffraction (GIXRD) for MoS2 film characterization provides valuable information about film density and grain orientation (texture). However, the determination of film stoichiometry can only be indirectly inferred via GIXRD. The combination of density and microstructure via GIXRD with chemical composition via grazing incidence X-ray fluorescence (GIXRF) enables the isolation and decoupling of film density, composition, and microstructure and their ultimate impact on film layer thickness, thereby improving coating thickness predictions via X-ray fluorescence. We have augmented an existing GIXRD instrument with an additional X-ray detector for the simultaneous measurement of energy-dispersive X-ray fluorescence spectra during the GIXRD analysis. This combined GIXRD/GIXRF analysis has proven synergetic for correlating chemical composition to the structural aspects of MoS2 films provided by GIXRD. We present the usefulness of the combined diagnostic technique via exemplar MoS2 film samples and provide a discussion regarding data extraction techniques of grazing angle series measurements.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3