Abstract
This paper aims to explore the influence of solvent effects on the crystal habit of venlafaxine hydrochloride using the modified attachment energy (MAE) model by molecular dynamics (MD) simulation. Solvent effects were investigated based on the different morphologies of venlafaxine hydrochloride acquired by simulation and experimental technology from the solvents of isopropanol, dimethyl sulfoxide, and acetonitrile. Firstly, morphologically dominant crystal faces were obtained through the prediction of crystal habit in vacuum by the attachment energy (AE) model. Subsequently, the MAEs were calculated by the MD simulation to modify the crystal shapes in a real solvent environment, and the simulation results were in agreement with the experimental ones. Meanwhile, in order to have a better understanding of the solvent effects, the surface structure was introduced to analyze the solvent adsorption behaviors. The results show that the crystal habits of venlafaxine hydrochloride are affected by the combination of the AE and surface structures. Finally, the flowability of the obtained crystal powders from different solvents was investigated by measurement and analysis of the angle of repose and compressibility. The above results verify that the physical properties are closely related to the morphologies of the crystals.
Publisher
Cambridge University Press (CUP)
Subject
Condensed Matter Physics,Instrumentation,General Materials Science,Radiation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献