PLSR as a new XRD method for downstream processing of ores: – case study: Fe2+ determination in iron ore sinter

Author:

König Uwe,Degen Thomas,Norberg Nicholas

Abstract

The use of high-speed detectors made X-ray diffraction (XRD) become an important tool for process control in mining and metal industries. Decreasing ore qualities and increasing prices for raw materials require a better control of processed ore and a more efficient use of energy. Traditionally quality control of iron ore sinter has relied on time-consuming wet chemistry. The mineralogical composition that defines the physical properties such as hardness or reducibility is not monitored. XRD analysis in combination with Rietveld quantification and statistical data evaluation using partial least-squares regression (PLSR) has been successfully established to determine the mineralogical composition and the Fe2+ content of iron ore sinter within an analysis time of less than 10 min per sample. A total of 35 iron ore sinter samples were measured and evaluated using PLSR and the Rietveld method. The results were compared with wet chemistry data. PLSR results show accuracy for the Fe2+ content of ±0.14%. No pure phases, crystal structures, or complex modeling of peak shapes are required. The Rietveld method was used to quantify the total phase composition of the samples. The Fe2+ content could be calculated from all phases present. Both methods take the full XRD pattern into account and can be simultaneously applied on the same measurement. PLSR was found to be the more robust method if only Fe2+ results are required. The Rietveld method helps predict other parameters such as the compressional strength of the sinter by monitoring all existing phases (e.g., larnite, C2S, or silico-ferrite of calcium and aluminum phases).

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Reference12 articles.

1. A profile refinement method for nuclear and magnetic structures

2. Leaching Dicalcium Silicates from Iron Ore Sinter to Remove Phosphorus and Other Contaminants.

3. The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1O20 (SFCA): solid solutions limits and selected phase relationships of SFCA in the SiO2–Fe2O3–CaO(–Al2O3) system;Hamilton;Neues Jahrb. Mineral.,1989

4. Rapid determination of FeO content in sinter ores using DRIFT spectra and multivariate Calibrations;Kwang-Su;Chemometr. Intell. Lab. Syst.,2000

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3