Evolution in the structure of akaganeite and hematite during hydrothermal growth: an in situ synchrotron X-ray diffraction analysis

Author:

Peterson Kristina M.,Heaney Peter J.,Post Jeffrey E.

Abstract

Synchrotron X-ray diffraction was used to monitor the hydrothermal precipitation of akaganeite (β-FeOOH) and its transformation to hematite (Fe2O3) in situ. Akaganeite was the first phase to form and hematite was the final phase in our experiments with temperatures between 150 and 200 °C. Akaganeite was the only phase that formed at 100 °C. Rietveld analyses revealed that the akaganeite unit-cell volume contracted until the onset of dissolution, and subsequently expanded. This reversal at the onset of dissolution was associated with a substantial and rapid increase in occupancy of the Cl site, perhaps by OH or Fe3+. Rietveld analyses supported the incipient formation of an OH-rich, Fe-deficient hematite phase in experiments between 150 and 200 °C. The inferred H concentrations of the first crystals were consistent with “hydrohematite.” With continued crystal growth, the Fe occupancies increased. Contraction in both a- and c-axes signaled the loss of hydroxyl groups and formation of a nearly stoichiometric hematite.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3