Author:
Winburn Ryan S.,Grier Dean G.,McCarthy Gregory J.,Peterson Renee B.
Abstract
Rietveld quantitative X-ray diffraction analysis of the fly ash Standard Reference Materials (SRMs) issued by the National Institute of Standards and Technologies was performed. A rutile (TiO2) internal standard was used to enable quantitation of the glass content, which ranged from 65% to 78% by weight. TheGSASRietveld code was employed. Precision was obtained by performing six replicates of an analysis, and accuracy was estimated using mixtures of fly ash crystalline phases and an amorphous phase. The three low-calcium (ASTM Class F) fly ashes (SRM 1633b, 2689 and 2690) contained four crystalline phases: quartz, mullite, hematite, and magnetite. SRM 1633b also contained a detectable level of gypsum, which is not common for this type of fly ash. The high-calcium (ASTM Class C) fly ash, SRM 2691, had eleven crystalline phases and presented a challenge for the version ofGSASemployed, which permits refinement of only nine crystalline phases. A method of analyzing different groups of nine phases and averaging the results was developed, and tested satisfactorily with an eleven-phase simulated fly ash. The results were compared to reference intensity ratio method semiquantitative analyses reported for most of these SRMs a decade ago.
Publisher
Cambridge University Press (CUP)
Subject
Condensed Matter Physics,Instrumentation,General Materials Science,Radiation
Reference30 articles.
1. NIST SRMP (1999). SRM 1633b, “Constituent Elements in Coal Fly Ash;” SRM 2689, 2690 and 2691, “Coal Fly Ashes;” SRM 676, “Alumina Internal Standard for Quantitative Analysis by X-Ray Powder Diffraction;” SRM 1976, “Instrument Sensitivity Standard for X-Ray Powder Diffraction.” National Institute of Standards and Technology, Standard Reference Materials Program, Room 204, Building 202, 100 Bureau Drive, Gaithersburg, MD 20899-2322 USA; http://ts.nist.gov/srm.
2. Use of a Database of Chemical, Mineralogical and Physical Properties of North American Fly Ash to Study the Nature of Fly Ashand Its Utilization as a Mineral Admixture in Concrete
3. Methods of Producing Standard X-Ray Diffraction Powder Patterns
4. McClune, W.F. (Editor), Powder Diffraction File, International Centre for Diffraction Data, Newtown Square, PA (1998).
5. XLV. The effect of grain or particle Size on x-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by x-ray methods
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献