From Prussian blue to iron carbides: high-temperature XRD monitoring of thermal transformation under inert gases

Author:

Aparicio Claudia,Filip Jan,Machala Libor

Abstract

The thermal behavior and decomposition reaction of Prussian blue (PB) (Fe43+[Fe2+(CN)6]3·xH2O) was studied under inert atmosphere of argon by simultaneous thermogravimetry and differential scanning calorimetry, from room temperature up to 900 °C, with a heating rate of 5 K min−1. Parallel to the thermogravimetric measurements, the thermal process was monitored by in situ X-ray powder diffraction (XRD) technique under nitrogen atmosphere. The thermogravimetric data show six steps, corresponding to different stages of the decomposition reaction; comparable results are also obtained by in situ XRD. In addition, a set of PB samples heated up to selected temperatures (190, 300, 370, 540, 680, and 790 °C) were ex situ analyzed by powder XRD and Mössbauer spectroscopy. It is found that PB exhibits a negative thermal expansion prior to the water release from its crystalline lattice. Above 300 °C, the decomposition is based on the release of cyanogen gas from the PB structure. At 370 °C, a cubic iron cyanide compound is formed, while at higher temperatures several iron carbides were found. The subsequent thermal treatment of these carbides leads to the formation of metallic iron and graphite.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3