Lattice deformation measurements via “on site X-ray diffraction”

Author:

Berti G.,de Marco F.,del Seppia M. E.

Abstract

The present paper is about the estimation of lattice deformation from data collected from manufactures directly on site. The aim here is to give evidence that the concept of the Mean Equivalent Lattice (MEL), when applied to “on site X-Ray Diffraction” is the basis for a reliable qualification of the material rheology to external solicitations. Such method allows for the identification of lattice deformations without resorting to the computation of the residual stress with using the elasticity constants (i.e. tensile, shear and rigidity constants E, μ, ν); these elasticity constants descend from the classical theory of solid mechanics, where the continuum mechanics and the material isotropic model are the fundaments. Any MEL deformation is instead related to the variation of the d-spacing among lattice planes which are connected to the anisotropic atomic arrangement. So the macroscopic scale is constituted by a number of MELs and related boundaries. The recent on site X-ray diffraction technology may offer effective and easy solutions, with a significant impact on reliability of results, simplification, economy and time consuming.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Reference11 articles.

1. UNI-EN 15305 (2008). “Non-destructive Testing – Test Method for Residual Stress analysis by X-ray Diffraction,” CEN - AFNOR Paris. [http://store.uni.com/magento-1.4.0.1/] [accessed 12-Aug-2013].

2. Detection and modelling of micro-crystallinity by means of X-ray Powder Diffractometry;Berti;Adv. X.Ray Anal.,1995

3. UNI-EN 13925-3 (2005). “Non-destructive testing- X-ray diffraction from polycrystalline and amorphous materials- Part 3: Instruments,” – CEN - AFNOR Paris. [http://store.uni.com/magento-1.4.0.1/] accessed 12-Aug-2013.

4. Berti G. (2007). “Diffractometer and Method for diffraction analysis,” US patent 7,260,178.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3