Abstract
Crystal structures, microtopography, morphologies, elemental compositions, and ionic conductivity have been investigated for Li5-xLa3(Nb,Ta)O12-y using X-ray diffraction (XRD), field-emission analytical scanning and transmission electron microscopies (S/TEM), and electrochemical impedance spectroscopy. Using Rietveld refinements with powder XRD patterns, we determined that the number of Li atoms in the formula is less than 5 and that Li5-xLa3(NbTa)O12-y crystallizes in the cubic garnet structure with a space group Ia-3d. Sintering at varying temperatures (750–1000 °C) for 5 h in an ambient atmosphere produced distinct outcomes. Rietveld refinements disclosed that the sample sintered at 1000 °C (Li3.43(2)La3Nb1.07(2)Ta0.93(2)O12-y, a = 12.8361(7) Å, V = 2114.96(3) Å3) exhibited the highest ionic conductivity, while the 850 °C sample had the lowest conductivity, characterized by lower Li concentration and impurity phases (Li(Nb,Ta)3O88, Li2CO3). Analyses, including XRD and electron microscopy, confirmed the 1000 °C sample as a relatively phase pure with enhanced Li content (Li/La = 1.2), larger grains (15 μm), and uniform crystallinity. The 1000 °C sample introduced additional partially filled Li3 (96h) sites, promoting Li migration, and enhancing ionic conductivity. The resulting XRD pattern at 1000 °C has been submitted to the Powder Diffraction File as a reference.
Funder
International Centre for Diffraction Data
Publisher
Cambridge University Press (CUP)