Author:
Momma Koichi,Ikeda Takuji,Belik Alexei A.,Izumi Fujio
Abstract
A computer program, Dysnomia, for the maximum-entropy method (MEM) has been tested for the evaluation and advancement of MEM-based pattern fitting (MPF). Dysnomia is a successor to PRIMA, which was the only program integrated with RIETAN-FP for MPF. Two types of MEM algorithms, i.e., 0th-order single-pixel approximation and a variant of the Cambridge algorithm, were implemented in Dysnomia in combination with a linear combination of the “generalized F constraints” and arbitrary weighting factors for them. Dysnomia excels PRIMA in computation speed, memory efficiency, and scalability owing to parallel processing and automatic switching of discrete Fourier transform and fast Fourier transform depending on sizes of grids and observed reflections. These features of Dysnomia were evaluated for MPF analyses from X-ray powder diffraction data of three different types of compounds: taurine, Cu2CO3(OH)2 (malachite), and Sr9In(PO4)7. Reliability indices in MPF analyses proved to have been improved by using multiple F constraints and weighting factors based on lattice-plane spacings, d, in comparison with those obtained with PRIMA.
Publisher
Cambridge University Press (CUP)
Subject
Condensed Matter Physics,Instrumentation,General Materials Science,Radiation
Cited by
250 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献