Assessment of L2 intelligibility: Comparing L1 listeners and automatic speech recognition

Author:

Inceoglu SolèneORCID,Chen Wen-HsinORCID,Lim HyojungORCID

Abstract

AbstractAn increasing number of studies are exploring the benefits of automatic speech recognition (ASR)–based dictation programs for second language (L2) pronunciation learning (e.g. Chen, Inceoglu & Lim, 2020; Liakin, Cardoso & Liakina, 2015; McCrocklin, 2019), but how ASR recognizes accented speech and the nature of the feedback it provides to language learners is still largely under-researched. The current study explores whether the intelligibility of L2 speakers differs when assessed by native (L1) listeners versus ASR technology, and reports on the types of intelligibility issues encountered by the two groups. Twelve L1 listeners of English transcribed 48 isolated words targeting the /ɪ-i/ and /æ-ε/ contrasts and 24 short sentences that four Taiwanese intermediate learners of English had produced using Google’s ASR dictation system. Overall, the results revealed lower intelligibility scores for the word task (ASR: 40.81%, L1 listeners: 38.62%) than the sentence task (ASR: 75.52%, L1 listeners: 83.88%), and highlighted strong similarities in the error types – and their proportions – identified by ASR and the L1 listeners. However, despite similar recognition scores, correlations indicated that the ASR recognition of the L2 speakers’ oral productions mirrored the L1 listeners’ judgments of intelligibility in the word and sentence tasks for only one speaker, with significant positive correlations for one additional speaker in each task. This suggests that the extent to which ASR approaches L1 listeners at recognizing accented speech may depend on individual speakers and the type of oral speech.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Linguistics and Language,Language and Linguistics,Education

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3