The effects of using corpora on revision tasks in L2 writing with coded error feedback

Author:

Tono Yukio,Satake Yoshiho,Miura Aika

Abstract

AbstractThis study reports on the results of classroom research investigating the effects of corpus use in the process of revising compositions in English as a foreign language. Our primary aim was to investigate the relationship between the information extracted from corpus data and how that information actually helped in revising different types of errors in the essays. In ‘data-driven learning’, previous research has often failed to provide rigorous criteria for choosing the words or phrases suitable for correction with corpus data. By investigating the above relationship, this study aims to clarify what should be corrected by looking at corpus data. 93 undergraduate students from two universities in Tokyo wrote a short essay in 20 minutes without a dictionary, and the instructors gave coded error feedback for two lexical or grammatical errors. They deliberately selected one error which should be appropriate for checking against corpus data and one that was more likely to be corrected without using any reference resource. Three weeks later, a short hands-on instruction of the corpus query tool was given, followed by revision activities in which the participants were instructed to revise their first drafts, with or without the tool depending on the codes given to each error. 188 errors were automatically classified into three different categories (omission, addition and misformation) using natural language processing techniques. All words and phrases tagged for errors were further annotated for part-of-speech (POS) information. The results show that there was a significant difference in the accuracy rate among the three error types when the students consulted the corpus: omission and addition errors were easily identified and corrected, whereas misformation errors were low in correction accuracy. This reveals that certain errors are more suitable for checking against corpus data than others.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Linguistics and Language,Language and Linguistics,Education

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3