Management of Cogongrass (Imperata cylindrica) with Velvetbean (Mucuna pruriens var. utilis) and Herbicides

Author:

Udensi Udensi E.,Akobundu I. Okezie,Ayeni Albert O.,Chikoye David

Abstract

Field experiments were conducted in 1992 to 1993 and in 1995 to 1996 in Ibadan, Nigeria, to assess the effect of velvetbean and herbicides on maize (corn) and cogongrass growth and to assess regrowth of the weed 1 yr after treatment. In 1992 and 1995 cover cropping with velvetbean and imazapyr and glyphosate application reduced cogongrass density as much as the handweeded control. The smothering effect of velvetbean was equivalent to that of glyphosate at 1.8 kg/ha but was less than imazapyr even at the lowest rate of 0.5 kg/ha. Addition of adjuvant did not improve the efficacy of either herbicide. Maize grain yield was higher in velvetbean plots than in fallow plots dominated by cogongrass. Velvetbean and herbicide effects on cogongrass 1 yr later (1993 and 1996) followed a similar trend as observed in the year of application. Annual weed density was highest in glyphosate plots, followed by imazapyr, and least in plots previously seeded to velvetbean. Maize grain yield was higher in herbicide plots (average yield of 3,170 and 1,920 kg/ha in 1993 and 1996, respectively) than in velvetbean plots (2,800 to 1,180 kg/ha in 1993 and 1996, respectively) and handweeded plots (2,890 and 723 kg/ha in 1993 and 1996, respectively). In 1996 the lowest maize yield was in handweeded plots without velvetbean, suggesting that weeding four times suppressed cogongrass density and biomass, but was not sufficient to minimize the subsequent competition from annual weeds. Uncontrolled cogongrass reduced maize yield to zero. These studies suggest that planting velvetbean for cogongrass control may be a better alternative for farmers without the resources to purchase herbicides.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference31 articles.

1. Mechanisms of weed suppression in cover crop-based production systems;Nancy;HortScience,1996

2. The Imperata grasslands of tropical Asia: area, distribution, and typology

3. Letters followed by this symbol are a WSSA-approved computer code from Composite List of Weeds, Revised 1989. Available only on computer disk from WSSA, 810 East 10th Street, Lawrence, KS 66044-8897.

4. Manyong V. M. , Houndekon A. V. , Govan A. , Versteeg M. V. , and van der Pol F. 1996. Determinants of Adoption for a Resource Management Technology: The Case of Mucuna in Benin Republic. Proc. International Conference of Advances in Agricultural and Biological Environment Engineering Conf., Beijing 15–19 August, Beijing: China Agricultural University Press. pp. 86–93.

5. Onyia N. 1997. Monitoring imazapyr pesticide in soils of the moist savanna in relation to the control of Imperata cylindrica. Ph.D. thesis. Department of Chemistry, University of Ibadan, Ibadan, Nigeria. 173 p.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3