2,4-D Amine Antagonism by Salts

Author:

Nalewaja John D.,Woznica Zenon,Matysiak Robert

Abstract

Research was conducted to determine the influence of salts on 2,4-D toxicity to kochia. Calcium, magnesium, sodium, potassium, and iron salts except for sulfate and phosphate salts of calcium and sodium were antagonistic to 2,4-D diethanolamine. None of the ammonium salts antagonized 2,4-D control of kochia. Effects of individual ions generally antagonistic to 2,4-D were additive when in mixture. 2,4-D generally controlled kochia better when mixed with various acids than with their ammonium salts in distilled, sodium bicarbonate, or ferric sulfate water carriers, relating to the lower pH with the acids. However, low pH was not essential in overcoming salt antagonism of 2,4-D for kochia control, nor was 2,4-D always effective with low pH. Sulfate and monobasic phosphate anions were most effective in overcoming sodium bicarbonate and calcium chloride antagonism of 2,4-D. The concentration of diammonium sulfate needed to overcome sodium bicarbonate antagonism of 2,4-D increased with sodium bicarbonate concentration. Diammonium sulfate at 2% (w/v) overcame 1200 mg L–1sodium as sodium bicarbonate. Nonionic surfactants and oil adjuvants also overcame antagonism of 2,4-D caused by water from several sources.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference15 articles.

1. Effect of Inorganic Salts on the Toxicity and Translocation of Glyphosate and MSMA in Purple Nutsedge (Cyperus rotundus)

2. U. S. Dep. Agric., ERS. 1984. Inputs, outlook, and situation report. November. 105-6. Washington, D.C. 20250.

3. Reversal of cation induced reduction in glyphosate action with EDTA;Shea;Weed Sci.,1984

4. Nutrient element addition to 2,4-D sprays;Sexsmith;Res. Rep. North Cent. Weed Control Conf.,1953

5. Sodium Bicarbonate Antagonism of 2,4-D Amine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3