Drop Formation and Impaction on the Plant

Author:

Reichard Donald L.

Abstract

The effect of variables that influence the retention of spray droplets impacting on leaf surfaces was studied, using a uniform-size droplet generator to produce drops ranging from 63 to 545 μm diam. To observe the impaction of spray droplets more easily and to measure their velocity before and after impaction, high-speed motion photography (6000 frames/sec) was used. Rebound of spray droplets depends on the micro-structure of the target surface. Leaf surfaces of several crops and weeds reflected 63 to 545 μm diam water drops traveling at velocities less than velocities of drops delivered by popular nozzles at commonly used spray pressures. If the concentration is high enough, some surfactants can reduce the rebound of drops. With one surfactant, its concentration had to be much greater than the critical micelle concentration to reduce reflection of spray drops.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference18 articles.

1. Pesticide surfactant systems. A multiplicity of surfactant physical properties employed to improve the biological effect;Seamen;Theor. Appl. Aspects,1982

2. Source of Uniform‐Sized Liquid Droplets

3. A System for Photographically Studying Droplet Impaction on Leaf Surfaces

4. The use of dimensional analysis in a study of drop retention on barley

5. Studies on Spray Retention by Leaves of Different Plants

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3