Effect of Temperature on Germination Characteristics of Glyphosate-Resistant and Glyphosate-Susceptible Kochia (Kochia scoparia)

Author:

Kumar Vipan,Jha Prashant

Abstract

Glyphosate-resistant (GR) kochia is an increasing concern for growers across the U.S. Great Plains and Canadian prairies. Integrated strategies to mitigate resistance will require an improved understanding of the seed germination dynamics of GR kochia populations. Experiments were conducted to characterize the germination of GR vs. glyphosate-susceptible (GS) kochia populations under different constant (5 to 35 C) and alternating (5/10 to 30/35 C) temperatures. Seven GR and two GS populations were collected from wheat–fallow fields in northern Montana. Selected lines of GR and GS were obtained after three generations of recurrent group selection in the greenhouse. The GR-selected lines had 4.1 to 10.8 averageEPSPScopies compared with a singleEPSPSgene copy for the GS selected lines. Four out of seven GR selected lines had lower final germination (dparameter) and took more time to complete 50% cumulative germination (I50values) under all constant and alternating temperatures, compared with the GS selected lines. Those GR selected lines also had a delayed germination initiation (I10values), particularly at lower temperatures (5 to 10 C constant or 5/10 C alternating). In contrast, the final germination (d) of the other three GR selected lines did not differ from GS lines at a majority of temperatures tested. The I50values of those GR lines were also comparable to GS lines under a majority of the temperatures. There was no significant correlation of observed percent cumulative germination andEPSPSgene copy number of selected kochia lines. The temperature-dependent dormancy and altered germination characteristics of the four GR kochia lines reflect the common selection of resistance and avoidance (glyphosate or other preseeding treatments) mechanisms. This is most likely attributed to long-term, intensive cropping practices and less diverse weed control methods, rather than a fitness cost or pleiotropic effect of multiple copies of theEPSPSgene.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3