Content-based image retrieval for industrial material images with deep learning and encoded physical properties

Author:

Shim Myung SeokORCID,Thiele Christopher,Vila Jeremy,Saxena Nishank,Hohl Detlef

Abstract

Abstract Industrial materials images are an important application domain for content-based image retrieval. Users need to quickly search databases for images that exhibit similar appearance, properties, and/or features to reduce analysis turnaround time and cost. The images in this study are 2D images of millimeter-scale rock samples acquired at micrometer resolution with light microscopy or extracted from 3D micro-CT scans. Labeled rock images are expensive and time-consuming to acquire and thus are typically only available in the tens of thousands. Training a high-capacity deep learning (DL) model from scratch is therefore not practicable due to data paucity. To overcome this “few-shot learning” challenge, we propose leveraging pretrained common DL models in conjunction with transfer learning. The “similarity” of industrial materials images is subjective and assessed by human experts based on both visual appearance and physical qualities. We have emulated this human-driven assessment process via a physics-informed neural network including metadata and physical measurements in the loss function. We present a novel DL architecture that combines Siamese neural networks with a loss function that integrates classification and regression terms. The networks are trained with both image and metadata similarity (classification), and with metadata prediction (regression). For efficient inference, we use a highly compressed image feature representation, computed offline once, to search the database for images similar to a query image. Numerical experiments demonstrate superior retrieval performance of our new architecture compared with other DL and custom-feature-based approaches.

Funder

Shell Exploration and Production Company

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3