Analogue scale models of pluton emplacement during transpression in brittle and ductile crust

Author:

Benn Keith,Odonne Francis,Lee Sharon K. Y.,Darcovich Ken

Abstract

Analogue experiments were used to investigate pluton emplacement during transpression in a layered crust. Models consisted of (1) a silicone gum-PbO suspension as analogue magma, (2) a silicone gum-Pb suspension as a basal ductile layer, and (3) an overlying sand pack representing brittle crust. The models were transpressed at 3 mm/hr causing the extrusion of the analogue magma from a progressively closing slot, and its emplacement into the ductile layer. The thicknesses of the layers were critical in controlling the shapes of intrusions and the structures that developed in the brittle overburden. Thicker sand packs led to flattened, symmetrical laccolith-shaped intrusions and the nucleation of one oblique thrust in the sand pack above the extremity of the intrusion. Thinner sand packs led to thicker, asymmetrical laccolith-like intrusions with uplift of the overburden on an oblique thrust, and the formation of a shallow graben in the extrados of a bending fold. Reducing the thickness of the basal ductile layer resulted in a larger number of shear zones in the sand pack, and structural geometries approaching those produced in experiments involving only a brittle analogue crust and no ductile layer. Shear zones in the sand pack were localised by intrusions, and also played a key role in displacing analogue brittle crust to make space for intrusions. The results suggest that tectonic forces may play an important role in displacing blocks of crust during pluton emplacement in transpressional belts. They also suggest that pluton shapes, and the geometries and kinematics of emplacement-related shear zones and faults, may depend on the depth of emplacement. In nature, depending on the structural level exposed in the map plane, faults and shear zones that helped make space for emplacement may not appear to be spatially associated with the pluton.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3