Algorithmic Decision-making, Statistical Evidence and the Rule of Law

Author:

Chiao VincentORCID

Abstract

Abstract The rapidly increasing role of automation throughout the economy, culture and our personal lives has generated a large literature on the risks of algorithmic decision-making, particularly in high-stakes legal settings. Algorithmic tools are charged with bias, shrouded in secrecy, and frequently difficult to interpret. However, these criticisms have tended to focus on particular implementations, specific predictive techniques, and the idiosyncrasies of the American legal-regulatory regime. They do not address the more fundamental unease about the prospect that we might one day replace judges with algorithms, no matter how fair, transparent, and intelligible they become. The aim of this paper is to propose an account of the source of that unease, and to evaluate its plausibility. I trace foundational unease with algorithmic decision-making in the law to the powerful intuition that there is a basic moral and legal difference between showing that something is true of many people just like you and showing that it is true of you. Human judgment attends to the exception; automation insists on blindly applying the rule. I show how this intuitive thought is connected to both epistemological arguments about the value of statistical evidence, as well as to court-centered conceptions of the rule of law. Unease with algorithmic decision-making in the law thus draws on an intuitive principle that underpins a disparate range of views in legal philosophy. This suggests the principle is deeply ingrained. Nonetheless, I argue that the powerful intuition is not as decisive as it may seem, and indeed runs into significant epistemological and normative challenges. At an epistemological level, I show how concerns about statistical evidence's ability to track the truth can be resolved by adopting a probabilistic, rather than modal, conception of truth-tracking. At a normative level, commitment to highly individualized decision-making co-exists with equally ingrained and competing principles, such as consistent application of law. This suggests that the “rule of law” may not identify a discrete set of institutional arrangements, as proponents of a court-centric conception would have it, but rather a more loosely defined set of values that could potentially be operationalized in multiple ways, including through some level of algorithmic adjudication. Although the prospect of replacing judges with algorithms is indeed unsettling, it does not necessarily entail unreasonable verdicts or an attack on the rule of law.

Funder

Social Sciences and Humanities Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

History and Philosophy of Science

Reference72 articles.

1. Muller v. Oregon, 208 U.S. 412 (1908).

2. Group to Individual (G2i) Inference in Scientific Expert Testimony;Faigman;University of Chicago Law Review,2014

3. Foundations of Evidence Law

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3