Environment and integrated agricultural systems

Author:

Hendrickson J.R.,Liebig M.A.,Sassenrath G.F.

Abstract

AbstractModern agriculture has done an excellent job producing food, feed and fiber for the world's growing population, but there are concerns regarding its continued ability to do so, especially with the world's limited resources. To adapt to these challenges, future agricultural systems will need to be diverse, complex and integrated. Integrated agricultural systems have many of these properties, but how they are shaped by the environment and how they shape the environment is still unclear. In this paper, we used commonly available county-level data and literature review to answer two basic questions. First, are there environmental limitations to the adoption of integrated agricultural systems? Second, do integrated agricultural systems have a lower environmental impact than more specialized systems? We focused on the Great Plains to answer these questions. Because of a lack of farm-level data, we used county-level surrogate indicators. The indicators selected were percent land base in pasture and crop diversity along a precipitation gradient in North Dakota, South Dakota, Nebraska and Kansas. Evaluated over the four-state region, neither indicator had a strong relationship with precipitation. In the Dakotas, both percent pasture land and crop diversity suggested greater potential for agricultural integration at the mid-point of the precipitation gradient, but there was no clear trend for Kansas and Nebraska. Integrated agricultural systems have potential to reduce the impact of agriculture on the environment despite concerns with nutrient management. Despite advantages, current adoption of integrated agricultural systems appears to be limited. Future integrated agricultural systems need to work with environmental limitations rather than overcoming them and be capable of enhancing environmental quality.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3