Enhancing ecosystem services with no-till

Author:

Lal R.

Abstract

AbstractEcosystem functions and services provided by soils depend on land use and management. The objective of this article is to review and synthesize relevant information on the impacts of no-till (NT) management of croplands on ecosystem functions and services. Sustainable management of soil through NT involves: (i) replacing what is removed, (ii) restoring what has been degraded, and (iii) minimizing on-site and off-site effects. Despite its merits, NT is adopted on merely ∼9% of the 1.5 billion ha of global arable land area. Soil's ecosystem services depend on the natural capital (soil organic matter and clay contents, soil depth and water retention capacity) and its management. Soil management in various agro-ecosystems to enhance food production has some trade-offs/disservices (i.e., decline in biodiversity, accelerated erosion and non-point source pollution), which must be minimized by further developing agricultural complexity to mimic natural ecosystems. However, adoption of NT accentuates many ecosystem services: carbon sequestration, biodiversity, elemental cycling, and resilience to natural and anthropogenic perturbations, all of which can affect food security. Links exist among diverse ecosystem services, such that managing one can adversely impact others. For example, increasing agronomic production can reduce biodiversity and deplete soil organic carbon (SOC), harvesting crop residues for cellulosic ethanol can reduce SOC, etc. Undervaluing ecosystem services can jeopardize finite soil resources and aggravate disservices. Adoption of recommended management practices can be promoted through payments for ecosystem services by a market-based approach so that risks of disservices and negative costs can be reduced either through direct economic incentives or as performance payments.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3