Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi

Author:

Mhango Wezi G.,Snapp Sieglinde S.,Phiri George Y.K.

Abstract

AbstractSustainable intensification of smallholder farms in Africa is highly dependent on enhancing biological nitrogen fixation (BNF). Legume diversification of maize-based systems is a core example of sustainable intensification, with the food security of millions of farm families at stake. This study highlights the constraints and opportunities associated with the adoption of legumes by smallholder farmers in southern Africa. A two-part survey of households and farm fields (n=88) was conducted in the Ekwendeni watershed of northern Malawi. Participatory research and education activities have been underway for over a decade in this region, resulting in expanded uptake of a range of legume species as intercrops and in rotation with the staple maize crop. Farmer adoption has occurred to a varying extent for soybean (Glycine max), pigeon pea (Cajanus cajan), velvet bean (Mucuna pruriens) and fish bean (Tephrosia vogelii). Farmers, working with the project valued pigeon pea and other legumes for soil fertility purposes to a greater extent than farmers not working with the project. Legumes were valued for a wide range of purposes beyond soil cover and fertility enhancement, notably for infant nutrition (at least for soybean), insect control, and vegetable and grain production for both market and home consumption. Literature values for BNF in tropical legumes range up to 170 kg N ha−1for grain and 300 kg N ha−1for green manure species; however, our field interviews illustrated the extent of constraints imposed by soil properties on smallholder fields in Malawi. The key edaphic constraints observed were very deficient to moderate phosphorus levels (range 4–142, average 33 mg kg−1), and moderately acid soils (range pH 5.1–7.9, average 6.2). The per farm hectarage devoted to legume production relative to maize production was also low (0.15 versus 0.35 ha), a surprising find in an area with demonstrated interest in novel legume species. Further, farmers showed a strong preference for legumes that produced edible grain, regardless of the associated nutrient removal in the harvested grain, and did not sow large areas to legume crops. These farm-level decisions act as constraints to BNF inputs in maize-based smallholder cropping systems. Overall, we found that legume productivity could be enhanced. We documented the value of policies and educational efforts that support farmers gaining access to high-quality seeds, amendments for phosphorus-deficient soils, and promotion of multipurpose legumes that build soils through leafy residues and roots, as well as providing grain for food security and sales.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Reference65 articles.

1. Facilitating food crop production in Lungwena, Mangochi district in Malawi: Lessons from a farmer based pass-on seed support model;Kabambe;African Journal of Agricultural Research,2008

2. Insect Pests of Beans in Africa: Their Ecology and Management

3. Extracts from Tephrosia vogelii for the protection of stored legume seeds against damage by three bruchid species

4. Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. Utilis – A review;Pulangethi;Plant Foods for Human Nutrition,2005

5. L-3,4-Dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L.) DC. var. utilis;Fuji;Agricultural Biology and Chemistry,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3