Financial transition and costs of sustainable agricultural intensification practices on a beef cattle and crop farm in Brazil's Amazon

Author:

Pedrosa Lorena MachadoORCID,Hoshide Aaron KinyuORCID,Abreu Daniel Carneiro de,Molossi Luana,Couto Eduardo GuimarãesORCID

Abstract

AbstractThe intensification of Brazil's beef cattle production system can involve different strategies to increase beef production while reducing deforestation in the Amazon biome and mitigating climate change. This study economically evaluates a cooperating beef farm in the state of Mato Grosso, Brazil's Amazon biome over three crop years (2015–16 to 2017–18), transitioning from an extensive grazing system to a semi-intensive system using five sustainable agricultural intensification (SAI) practices. These five practices include (1) grain supplementation for cattle, (2) pasture fertilization, (3) pasture re-seeding, (4) crop–livestock integration (CLI) and (5) irrigated and fertilized pasture that is rotationally grazed. The relative costs of these five SAI strategies used on this cooperating farm are compared. The adoption of SAI strategies increased beef productivity 5.7% (228–241 kg live-weight sold per hectare) and gradually improved net farm income by ~130% over the 3 years of transition (−US$94.79 to $29.80 ha−1). Grain supplementation (US$188 ha−1) had the cheapest cost per hectare, followed by pasture fertilization (US$477 ha−1) and pasture reseeding (US$650 ha−1). The most costly practice was in-ground irrigation of fenced rotationally grazed pasture (US$1600 ha−1) with the second most costly being CLI (US$672 ha−1). Despite adoption challenges of these SAI practices, past research confirm these five practices can increase beef productivity and profitability while reducing carbon footprint. Regardless of the cost per hectare of each practice, farmer adoption can be improved through education, support and incentives from both the public and private sectors.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3