The Power of Characters: Evaluating Machine Learning-Modified Bayesian Improved Surname Geocoding Inference of Race in Redistricting

Author:

Curiel John A.ORCID,DeLuca KevinORCID

Abstract

Abstract Identifying racial disparities in policy and politics is a pressing area of research within the United States. Where early work made use of identifying potentially noisy correlations between county or precinct demographics and election outcomes, the advent of Bayesian Improved Surname Geocoding (BISG) vastly improved estimation of race by employing voter lists. Machine Learning (ML)-modified BISG in turn offers accuracy gains over the static – and potentially outdated – surname dictionaries present in traditional BISG. However, the extent to which ML might substantively alter the policy and political implications of redistricting is unclear given its improvements in voter race estimation. Therefore, we ascertain the potential gains of ML-modified BISG in improving the estimation of race for the purpose of redistricting majority-minority districts. We evaluate an ML-modified BISG program against traditional BISG estimates in correctly estimating the race of voters for creating majority-minority congressional districts within North Carolina and Georgia, and in state assembly districts in Wisconsin. Our results demonstrate that ML-modified BISG offers substantive gains over traditional BISG, especially in diverse political geographic units. Further, we find meaningful improvements in accuracy when estimating majority-minority district racial composition. We conclude with recommendations on when and how to use the two methods, in addition how to ensure transparency and confidence in BISG-related research.

Publisher

Cambridge University Press (CUP)

Reference42 articles.

1. Redistricting Out Descriptive Representation: The Harmful Effect of Splitting ZIP Codes on the Constituent–Representative Link

2. Chaturvedi, Rochana , and Chaturvedi, Sugat . 2020. “It’s All in the Name: A Character Based Approach to Infer Religion.” https://arxiv.org/abs/2010.14479, arXiv Working Paper.

3. A New Method for Estimating Race/Ethnicity and Associated Disparities Where Administrative Records Lack Self-Reported Race/Ethnicity

4. Congress in Black and White

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3